

Racetrack FFAG muon decay ring for vSTORM

JB. Lagrange, J. Pasternak, Y. Mori

Outline

Zero-chromatic FFAG

2

Zero-chromatic FFAG

Racetrack FFAG muon decay ring

2

Zero-chromatic FFAG

Racetrack FFAG muon decay ring

Comparison

Outline

3

Zero-chromatic FFAG

Racetrack FFAG muon decay ring

Comparison

Geometrical field index: $k = \frac{R}{\overline{B}} \frac{d\overline{B}}{dR}$

$$B(r,\theta) = B_0 \left(\frac{r}{r_0}\right)^k \cdot \mathcal{F}(\theta - \tan\zeta \ln\frac{r}{r_0})$$

Spiral sector

Radial sector

Straight scaling FFAG

Normalized field gradient: $m = \frac{1}{\overline{B}} \frac{d\overline{B}}{d\chi}$

Rectangular case

Tilted straight case

Straight scaling FFAG experiment

7

Zero-chromatic FFAG

Racetrack FFAG muon decay ring

Comparison

Racetrack FFAG

)11年10月18日火曜日

vSTORM Racetrack FFAG **Constraints:**

• in the straight part, the scallop must be as small as possible to keep reasonable the size of the detector. 15 mrad has been chosen as the maximum angle.

• in the straight part, the scallop must be as small as possible to keep reasonable the size of the detector. 15 mrad has been chosen as the maximum angle.

In the dispersion matching section, a drift length of ~2.6 m is necessary for stochastic injection.

• in the straight part, the scallop must be as small as possible to keep reasonable the size of the detector. 15 mrad has been chosen as the maximum angle.

In the dispersion matching section, a drift length of ~2.6 m is necessary for stochastic injection.

• to keep the ring as small as possible, SC magnets (super-ferric, up to 3 T) in the arcs are considered. Normal conducting magnets are used in the straight part.

• in the straight part, the scallop must be as small as possible to keep reasonable the size of the detector. 15 mrad has been chosen as the maximum angle.

In the dispersion matching section, a drift length of ~2.6 m is necessary for stochastic injection.

• to keep the ring as small as possible, SC magnets (super-ferric, up to 3 T) in the arcs are considered. Normal conducting magnets are used in the straight part.

large transverse acceptance is needed in both planes (1000π mm.mrad).
JB Lagrange - FFAG13 - Sept. 2013

OPTION #1: "FODO-LIKE"

Straight: 175 m, maximum scallop angle: 12 mrad

Comparable straight length than FODO lattice

OPTION #1: "FODO-LIKE"

Cell parameters

	Circular	Matching	Straight
	Section	Section	Section
Type	FDF	FDF	DFD
Cell radius/length [m]	17.3	36.1	5
Opening angle [deg]	30	15	
k-value/m-value	6.202	26.785	$5 \mathrm{m}^{-1}$
Packing factor	0.92	0.58	0.16
Horizontal phase advance /cell [deg]	90.0	90.0	15.8
Vertical phase advance /cell [deg]	21.1	23.7	16.8
Average dispersion /cell [m]	2.4	1.3	0.2
Number of cells /ring	4×2	4×2	35 imes 2

OPTION #1 Tune diagram $\frac{\Delta P}{P} = \pm 16\%$

OPTION #1 Magnetic field for P_{max} (+16%)

Beta-functions at matching momentum

Horizontal (plain red) and vertical (dotted purple) betafunctions for half of the ring. JB Lagrange - FFAG13 - Sept. 2013

Dispersion function at matching momentum

Transverse acceptance

Maximum horizontal stable amplitude over 100 turns Maximum vertical stable amplitude over 100 turns

OPTION #2: "LONG"

Straight: 230 m, maximum scallop angle: 12.5 mrad

Long straight length for a greater number of decayed pions.

OPTION #2: "LONG"

Cell parameters

	Circular	Matching	Straight
	Section	Section	Section
Type	FDF	FDF	DFD
Cell radius/length [m]	17.3	36.1	2.8
Opening angle [deg]	30	15	
k-value/m-value	6.19	26.72	$5 \mathrm{m}^{-1}$
Packing factor	0.92	0.58	0.29
Horizontal phase advance /cell [deg]	90.0	90.0	8.3
Vertical phase advance /cell [deg]	22.6	25.5	9.5
Average dispersion /cell [m]	2.4	1.3	0.2
Number of cells /ring	4×2	4×2	83×2

OPTION #2 Tune diagram $\frac{\Delta P}{P} = \pm 16\%$

OPTION #2 Magnetic field for P_{max} (+16%)

Beta-functions at matching momentum

Horizontal (plain red) and vertical (dotted purple) betafunctions for half of the ring. JB Lagrange - FFAG13 - Sept. 2013

Dispersion function at matching momentum

Transverse acceptance

Maximum horizontal stable amplitude over 100 turns

Maximum vertical stable amplitude over 100 turns

OPTION #3: "LOW-COST"

Straight: 156 m, maximum scallop angle: 13.9 mrad

Short straight length for a cheaper lattice.

OPTION #3: "LOW-COST"

Cell parameters

	Circular	Matching	Straight
	Section	Section	Section
Type	FDF	FDF	DFD
Cell radius/length [m]	17	36.15	3
Opening angle [deg]	30	15	
k-value/m-value	6.21	26.83	$4 {\rm m}^{-1}$
Packing factor	0.92	0.58	0.4
Horizontal phase advance /cell [deg]	90.0	90.0	7.3
Vertical phase advance /cell [deg]	19.1	21.9	8.6
Average dispersion /cell [m]	2.4	1.3	0.25
Number of cells /ring	4×2	4×2	52×2

OPTION #3 Tune diagram $\frac{\Delta P}{P} = \pm 16\%$

OPTION #3 Magnetic field for P_{max} (+16%)

Beta-functions at matching momentum

Horizontal (plain red) and vertical (dotted purple) betafunctions for half of the ring. JB Lagrange - FFAG13 - Sept. 2013

Dispersion function at matching momentum

Transverse acceptance

Maximum horizontal stable amplitude over 100 turns Maximum vertical stable amplitude over 100 turns

Stochastic Injection

Preliminary results

Stochastic injection principle (J. Pasternak)

Qero-chromatic FFAG

Racetrack FFAG muon decay ring

Comparison

Parameters	FODO (Jun. 2013)	RFFAG "FODO-like"	RFFAG "long"	RFFAG "low-cost"
L _{straight} [m]	185	175	230	156
Circumference [m]	480	500	613	460
Dynamical acceptance A _{dyn}	0.6	0.95	0.95	0.95
Momentum acceptance	±10%	±16%	±16%	±16%
π /POT within momentum acceptance	0.094	0.171	0.171	0.171
Fraction of π decay in one straight (F_s)	0.48	0.47	0.56	0.43
Straight-circumference ratio (Ω)	0.39	0.35	0.38	0.34
$A_{dyn} \ge \pi/POT \ge F_s \ge \Omega$	0.011	0.027	0.035	0.024

4T magnet option

4T magnet (PAMELA type) would give several advantages:

Shrink the arc part of about 25 m,

increase the straight/circumference ratio,

• better dispersion matching ($\eta_{max} < 2 \text{ m}$),

Smaller excursion.

Promising results for racetrack FFAG ring as a muon decay ring for NuSTORM.

Promising results for racetrack FFAG ring as a muon decay ring for NuSTORM.

Quite flexible regarding the circumference.

Promising results for racetrack FFAG ring as a muon decay ring for NuSTORM.

Quite flexible regarding the circumference.

Promising results for racetrack FFAG ring as a muon decay ring for NuSTORM.

Quite flexible regarding the circumference.

© Cost may not be higher than FODO solution.

Promising results for racetrack FFAG ring as a muon decay ring for NuSTORM.

Quite flexible regarding the circumference.

© Cost may not be higher than FODO solution.

Larger momentum acceptance (±25% achieved previously) for wider magnets.

Thank you for your attention

Back-up slides

Normal conducting arcs

	Circular	Straight
	Section	Section
Type	FDF	DFD
Cell radius [m]/opening angle [deg] or Length [m]	36/11.25	6
k-value or m-value	24.95	2.65 m^{-1}
Packing factor	0.96	0.10
Horizontal phase advance /cell [deg]	67.5	13.1
Vertical phase advance /cell [deg]	11.25	16.7
Average dispersion /cell [m]	1.39	0.38
Number of cells /ring	16×2	40×2

Normal conducting arcs

Dispersion function

VSTORM Normal conducting arcs

Multi-particle tracking <u>without dispersion matching</u>. 500 particles with a Waterbag distribution. Unnormalized emittances are 400 π mm.mrad in transverse planes. Momentum uniformly distributed around 3.8 GeV/c <u>±16%</u>.

Injected Beam in the horizontal (left) and vertical (right) phase spaces

Normal conducting arcs Multi-particle tracking <u>without dispersion matching</u>. After 60 turns — no particle lost. (no muon decay implemented in the simulation).

STORM Normal conducting arcs Multi-particle tracking with dispersion matching. 1350 particles with a Waterbag distribution. Unnormalized emittances are 400π mm.mrad in transverse planes. Momentum uniformly distributed around 3.8 GeV/c ±26%.

Injected Beam in the horizontal (left) and vertical (right) phase spaces

Normal conducting arcs Multi-particle tracking with dispersion matching. After 60 turns 10 particles (0.7%) lost (no muon decay implemented in the simulation).

Results in the horizontal (left) and vertical (right) phase spaces extraction injection