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Abstract

Serpentine acceleration is typified by fixed radio frequency, fixed magnetic
field and a near (but not) isochronous lattice, radial motion of the orbit, and
two or more reversals of the motion in RF phase. This was discovered
in 2003 for linear non-scaling FFAGs in the relativistic regime. In 2012,
Kyoto University School of Engineering showed that serpentine accelera-
tion is possible also in scaling FFAGs and may span the non-relativistic to
relativistic regime. As a function of two key parameters, field index and
synchronous energy, this paper shows how to optimize the extraction en-
ergy and the voltage per turn for the scaling case. Optimization is difficult,
and typically leads to poor performance: either extreme voltage or small
acceleration range. Nevertheless, designs with credible acceleration pa-
rameters can be obtained; and indicative examples are presented herein.
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Introduction

In the scaling FFAG, the magnet field has the form:

Bz(R, z = 0) = (R/R0)k

where k > 0 is the field index. R0 is a reference radius. The subscript s
shall denote synchronous value. The general orbit radius is given by

R/Rs = (P/Ps)
α

where α = 1/(1 + k) < 1 is solely a property of the lattice. It follows that
revolution period T as a function of E,P is given by

T/Ts = (E/Es)(P/Ps)
(−1+α) = (βs/β)[(βγ)/(βsγs)]α .

Here γ is the relativistic kinematic factor, E = E0γ and E0 = m0c
2

is the rest mass energy. We define T ≡ T (γ), Ts ≡ T (γs) and Tt ≡
T (γt) where Es = E0γs is a synchronous energy and Et = E0γt is the
transition energy. One may eliminate β = v/c in favour of γ.
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Orbit Revolution Period
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Period versus energy (γ) for α = 1/2 (blue), 1/4 (red), 1/8 (yellow), 1/16
(green).
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Two Synchronous Energies

The curves are ”U” or ”V”-shaped. γ(T ) is a double valued function: to
each value of T belongs two values of γ.

Each curve have a minimum which defines the transition energy. Solving
∂(T/Ts)/∂γ = 0, one finds γt = 1/

√
α.

For brevity, let γs1 ≡ γ1 and γs2 ≡ γ2 be two energies having the same
revolution period; there is a continuum of such doublets. We shall adhere
to the convention that γ1 < γt < γ2. A certain doublet is chosen to be
the synchronous reference when we set the radio frequency (RF) to be co-
periodic with the orbit period T (γ1) = T (γ2). Once this is chosen E1, E2

become fixed points of the motion. Both values of the synchronous Es are
equally valid!
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It is a little arbitrary, but we choose to work with the lower Es1 because it
exists in the narrow range 1 < γs1 < γt.
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The general features of the T/Tg curves are a very steep rise as γ → 1,
and a long slow ramp for γ � γt. When selecting reference doublets, this
has the consequence that as γ1 → 1, so γ2 → ∞. Thus the range of
acceleration is unbounded. But this range is illusory, and corresponds to a
linac-like regime with prodigious voltage requirement.
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Hamiltonian

H(E,P, φ) ≡ −Eh+ h(PPs)
(P/Ps)α

Es(1 + α)
+
eV cosφ

2π
. (1)

Because of the FFAG scaling property, the Hamiltonian is invariant whether
we useE1 orE2 for the synchronous energy. We set h times their common
revolution frequency equal to the radio frequency. These two energies are
either side of transition; so, during acceleration, the direction of phase slip
for the entire beam reverses twice.
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Case 1:
(α, γs) = (0.09357,1.650)
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Case 3:
(α, γs) = (0.1371,2.427)

Phase space contours: energy (γ) versus RF phase (φ).

Serpentine acceleration in the S-shape channel between two RF buckets
offset in energy can be greater than the range (bottom to top) within a
single RF bucket.



Acceleration Range

The range is the sum of three phase space arcs: (i) from the injection
energy Ei to the first synchronous energy E1; (ii) a path between E1 and
E2; (iii) from the second synchronous energy to the extraction energy Ex.

The extraction energy is obtained by equatingH(Ex, Px, π) = H(E2, P2,0),
writing Ex = E2 + δEx, and solving for the increment

δE2
x ≈

2V/πh

+1/E2 − E2/P
2
2 (1− α)

The injection energy is obtained by equatingH(Ei, Pi,0) = H(E1, P1, π),
writing Ei = E1 − δEi, and solving for the increment

δE2
i ≈

2V/πh

−1/E1 + E1/P
2
1 (1− α)
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The energy range of the machine is

∆E = (Ex − Ei) ≈ (E2 − E1) + δEi + δEx ∼ 2E2

which is expressible solely in terms of E1, E2. But E2 is expressible in
terms of E1: E2(E1) is the solution of T (E1) = T (E2). Hence there is
an expression for the energy range in terms of E1, V, α.

Typically δEi � δEx: δEi ∼ P1c
√

2 and δEx ∼ E2
√

2.

Typically, ∆E = (Ex − Ei) ∼ 2E2.
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The total acceleration range ∆E (blue) and the contribution from the fixed
points (E2−E1) (red) for a particular α as a function of γs1. The quantities
are normalized by the transition energy. As γs → 1 the range becomes
unbounded; and as γs → γt the range shrinks to zero.
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Minimum Voltage

The condition to connect the two fixed points E1 and E2 by a phase
space path of zero width is obtained by equating the two Hamiltonians
H(E1, P1, π) = H(E2, P2,0) and solving for voltage per turn:

eV0

πh
= (E2 − E1) +

(E2P
2
1 − E1P

2
2 )

E1E2(1 + α)
. (2)

Evidently, one prefers low harmonic number. Eliminating the momenta
leads to

eV

E0
= πh

(γ2 − γ1)(γ1γ2α− 1)

γ1γ2(1 + α)
. (3)

This is a very significant relation.
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linac and ring like regimes

If αγ1γ2 � 1 this corresponds to acceleration in a linac-like regime (case 1)
in which ∆γ/γt � 1 and

eV0/E0 → (γ2 − γ1)απh/(1 + α)

This is a very few turn acceleration regime, and there is little point employ-
ing an FFAG ring unless the particles are very short lived. The required
voltage is prodigious: order the rest mass energy per turn; this may be
acceptable for leptons (e.g. 0.5 MeV for e) but not for hadrons (e.g. 1 GeV
for p).

Contrastingly, if αγ1γ2 → 1 then V → 0. In principle, this implies ∆E/eV →
∞; but ∆γ/γt → 0. This corresponds to acceleration in a ring-like regime
(case 3), with tiny voltage and many turns but with a small range.
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Minimum voltage

eV

E0
= πh

(γ2 − γ1)(γ1γ2α− 1)

γ1γ2(1 + α)
. (4)

By fine tuning of parameters, this feature may be exploited to give a limited
multi-turn acceleration (cases 2,4,5).

αγ1γ2 = 1 has the single solution is γ1γ2 = γt. For all other values such
that T (γ1) = T (γ2), αγ1γ2 > 1 and rises progressively rapidly because
γ2 increases more quickly than γ1 falls. Clearly, it is an advantage to use
small α.
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Optimization

Our task would appear to be to maximize the acceleration range for a given
value of the voltage per turn V .

Figure shows the normalized range ∆E/Et (red), voltage eV0/E0 (yel-
low), and ∆E/eV0 (blue) which is roughly the number of turns, and as
function of γs1. While ∆E/eV rises, the acceleration range falls dramati-
cally; the voltage per turn falls even more precipitously. These behaviours
are common to all values of α.
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The minimum voltage per turn is essentially the product of range and a
quantity that diminishes as γs1 → γt. This has two consequences for the
combination ∆E/eV0: (i) it is independent of range; and (ii) it rises as
the range diminishes. Contrary to expectations, ∆E/eV is not a suitable
figure of merit upon which to base optimization.

So we must apply to ∆E and eV0 directly as the basis for optimization.
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We know that γs1 → 1 (large range, large voltage, few turns) and γs1 →
γt (small range, tiny voltage, many turns) are both poor choices for the
synchronous energy.

But one may speculate that useful working points exit between these ex-
tremes. Our approach is to take combinations [γ1, γ2] which satisfy T (γ1) =

T (γ2) exactly, and roughly satisfy γ1γ2 ≈ γ2
t . The optimization amounts

to scanning α, γs1.



Normalized range (left) and required voltage (right) as function of α, γs1.
Range of α = [0.1,0.5].

Figure shows that maximizing the energy range and minimizing the voltage
are contradictory efforts. Thus one must choose, for given index α, either
the range and accept the voltage, or place a limit on voltage per turn and
accept the energy range.
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Alternatively, for given range and voltage values one may search for the
(α, γs) combination that leads to the largest value of α (i.e. smallest value
of k) and hence the easiest-to-realize magnetic lattice.

Figure exemplifies the challenge. Let ρ, ν be target values. Optimization
corresponds to finding the intersection of the two surfaces: (∆γ/γt)/ρ ≥
1 and (eV0/E0)/ν ≤ 1 in the (α, γs1) plane, which leads to a curve.

Introducing the objective of greatest α leads to a single point and the con-
dition (∆γ/γt)/ρ = (eV0/E0)/ν to be solved for (α, γs1).
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Examples

We present seven examples, each with different design objectives: (ρ, ν).
The first case is linac-like, with large range and voltage. The third case is
ring-like, with small voltage and many turns. The fifth case is a toy acceler-
ator that spans the Newtonian to relativistic region. The second and fourth
cases are intermediate with similar number of turns, but with opposing ten-
dency of α and δγ ≡ eV0/E0. The sixth case is that of Kyoto University
POP 8 MeV electron FFAG. The seventh is a competitor with more relaxed
field index and voltage per turn.
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Examples

# ∆γ/γt δγ turn α k γinj γs1 γt γs2 ∆γ

1 10. 2.0 16.35 0.0936 9.688 1.0 1.650 3.269 14.77 32.38
2 2.0 0.150 36.37 0.1344 6.44 1.306 2.025 2.728 4.419 5.462
3 1.0 0.030 90.03 0.1371 6.3 1.768 2.427 2.701 3.304 2.70
4 1.0 0.050 35.79 0.3123 2.2 1.208 1.546 1.789 2.279 1.789
5 0.75 0.040 25.0 0.5632 0.775 1.027 1.163 1.333 1.647 1.000
6 6.28 1.38 11.3 0.163 5.13 1.00 1.41 2.48 8.13 15.5
7 4.0 0.70 13.3 0.184 4.42 1.00 1.46 2.33 5.65 9.3

Turn ≈∆E/eV0
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Phase space contours: energy (γ) versus RF phase (φ).
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(α, γs) = (0.134416,2.02489)
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Conclusion

The scaling FFAG proves to be a versatile platform for exploiting serpen-
tine acceleration. However, the performance is generally poor: either the
voltages are large and the turns are few, or the voltages and accelera-
tion range are small. In either case, other accelerator types (linac and
cyclotron, respectively) would be more effective.

Nevertheless, careful optimization can produce intermediates cases with
credible parameters that have the appeal of acceleration over the Newto-
nian (γ ≈ 1) to relativistic regime (γ � 1).

Note, these conclusions do not apply to scaling FFAGs with swept RF; they
are a class distinct from the considerations above.
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